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Abstract—Triboelectrically-charged objects may create threshold
sparks, electrostatic discharge (ESD) events, to equilibrate charge
between themselves and other relatively charged objects. ESD
events exhibit many complex physical phenomena. They are a
nexus of several fields of physics with disparate characteristic
scales: plasma physics, chemical kinetics, hydrodynamics, circuit
models, etc. These scales can span many orders of magnitude
from the varied collisions thermalizing information within a
plasma on the O(fs/ps) to the physical size of the plasma channel
on the O(100µm), to the speed of a nonlinear hydrodynamic
wave propagating at O(µm,ns). These threshold ESD events
may occur in situations of programmatic importance, delivering
energy and power profiles to a “victim load” generating delete-
rious consequences. To predict and mitigate these consequences
we must answer questions about the spark’s energy budget: how
much energy goes into producing the spark channel; how much
gets radiated away; how much energy is advected away into the
hydrodynamics; and how much energy is delivered to a victim
load. An ESD simulation toolset has been created and evolved
in order to answer these questions. An appropriate, physics-
guided implementation for simulation can be done by gaining
insight into its constituent physics and leveraging that intuition
to choose a suitable numerical operator. We examine in detail the
chemical kinetics, circuit discharge, and hydrodynamics to deter-
mine dominant regimes, values, timescales, and interactions to
uncover the underlying physical dynamics. We also examine and
propose model reduction schemes for high-dimensional chemical
kinetics. We use past and current work with experimentally-
validated and theoretically-verified hydrodynamics to calculate
applicability limits of the non-ionizing strong shock limit. We
quantify the energy budget from a hydrodynamic perspective
and demonstrate that a significant fraction of the stored energy is
“earmarked” for hydrodynamic advection as an energy terminus.
Lastly, we combine the constituent physics of an ESD event
(chemical kinetics, circuit model, and hydrodynamics) into a
cohesive, actionable toolset and obtain promising results from an
isothermal test case. We then propose a viable, modular evolution
of the ESD toolset based upon the performed examination of the
physics uncovering dominant physical scales and the stiffness of
the compositional differential system.

I. INTRODUCTION

Threshold electrostatic discharge (ESD) events (sparks) are
a nexus of the fields of hydrodynamics, chemical kinetics,
plasma physics, electromagneism, and statistical mechanics,
see Fig. 1. There has been a large effort the past five years
at both the Colorado School of Mines (CSM) [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], and at Los Alamos
National Laboratory [12], [13], [14], [15], [16], [17], [18],
[19], [20] to describe these threshold sparks. These efforts
have spanned theoretical work done by David Flammer solving
the electron distribution function, numerical work modeling
the spark gap breakdown and streamer propagation by John
Rose, and experimental efforts producing sparks in air and
other gases by Charles “Chip” Durfee and his students. The
work documented within this report fits within the larger whole
by combining some of the constituent physics of ESD events
into an ESD simulation capability. This is accomplished by
looking at the requisite physical scales, examining in detail the
dominant physics and using that gleaned insight to eventually
propose a suitable numerical operator motivated by physics.

ESD Events

Electromagnetism Plasma 
Physics

Chemical KineticsStatistical Mechanics

Hydrodynamics

Fig. 1: ESD events are a nexus of many fields of physics:
electromagnetism, fluid dynamics, chemical kinetics, statistical
mechanics, and plasma physics. It takes tools from all of these
fields in order to be successful in the ESD Initiative.

The Laboratory’s stockpile stewardship mission is predicated
upon a holistic marriage of experimental, computational, and
theoretical physics, Fig. 2. This holistic marriage of disciplines
is a common theme in physics. The combination of all three is
greater than individual sums of their parts, enabling guarantees
and enforcement.

Ex
pe

rim
en

t Sim
ulation

Theory

LANL Physics Basis

Fig. 2: Cartoon schematic of how the laboratory’s mission is
predicted upon the marriage of experimental, computational,
and theoretical physics. The ESD simulation toolset will be
an integration of all these disciplines into a synergized whole.

Simulation has had increasing visibility in recent decades
for well-known and documented reasons. In this report we
document the integration of finite element hydrodynamic,
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plasma chemistry and circuit models into a cohesive, action-
able package. Electromagnetism is not considered on these
timescales due to the speed that which electromagnetic radia-
tion propagates*. Statistical mechanics is implicitly considered
due to the hydrodynamic equations (Euler or Navier-Stokes)
being moments of the Boltzmann equation which comes from
the BBGKY hierarchy underpinning much of classical field
theory when applied to statistical mechanics†. The simulations
are done to enumerate and then quantify the possible energy
flow pathways in the complex energy network that are ESD
events, Fig. 3. The beginning node, green circle, of this energy
pathway is energy stored on the charged object. One energy
terminus, red circle, is the energy going into shock formation
and resultant hydrodynamic propagation. This detailed analy-
sis by simulation is being performed because we are obligated
to get the right answer for the right reasons to avoid deleterious
consequences for detonator safety.

Electrostatic
Energy “Victim”

Electric
Fields

Thermal
Expansion

Plasma

Shock
Wave

Various
Energy 

Processes
& 

Sinks

Air Gap

Sound &
Radiation

Channel
Current

?

?

I(t) = ?

Fig. 3: ESD events constitute a complex network of pathways
for energy to go down in a cascade from being stored initially
on a charged object to any number of terminuses.

Deleterious consequences stemming from detonator are causes
for concern along an axis of acceptable probable events. One
physical mechanism in ESD events that causes concern is a
possible positive feedback cycle, Fig. 4, whereby expansion
caused by an increase in the thermodynamic equation of
state (pressure) causes advection and thus a decrease in mass
density ρ along the axis of symmetry r = 0 of a cylindrical
channel used to model the ESD event. The density decrease
along the axis of symmetry then causes characteristic plasma
variables (reduced electric field, ionization rate, drift velocity
etc.) to increase thusly increasing the channel current I and
increasing the energy deposited into the channel q0. It is
thought that this increased energy deposition causes further
increase of the thermodynamic pressure, perpetuating the
cycle beginning with hydrodynamic advection. By performing
this simulation work we believe that by including physically
motivated and appropriate constituent physics (hydrodynamic,

*The speed of light c ∼ 3e8 m/s≈ft/ns is much greater than than the
timescale of interest in our simulations which are on the order of µm/ns.

†We implicitly assume that the distribution of velocities in each and
every individual cell in our hydrodynamic simulation follows a Maxwell-
Boltzmann distribution (Gaussian ∼ e−(v−vstream)2 ). Each cell must
satisfy the competing conditions of having enough particles to be statistically
representative, and be small enough that thermodynamic variables may be
accurately approximated as homogenous throughout.

plasma kinetic, and circuit) we obtain the right answer for the
right reasons.

Possible thermal feedback cycle 
for accelerated air breakdown

Joule heating of
neutral molecules

Expansion: neutral
density N decreases

Reduced electric field
E/N increases

Ionization rate
and drift velocity
increase

Current density
increases

Fig. 4: ESD events may possibly have the positive feedback
cycle involving hydrodynamic evolution of the neutral number
density along the axis of symmetry, plasma variables, and joule
heating.

This content of the report is as follows. Section II provides an
overview of the utilized finite element hydrodynamic solver.
Section III provides a detailed analysis of the chemical kinetics
constituting this differential system that is part of the total
system solved on a cell-by-cell basis within the hydrodynamic
code. Section IV provides an analysis into reduction methods
from three perspectives: dynamical systems and differential
geometry (slow manifolds), statistical physics, and data sci-
ence. Section V provides an overview of some past and current
work done by the authors from a hydrodynamic perspective
with a hydrodynamic simulation. This includes simulation
validation and verification of a simulation suite using the
described finite element code. Finally, Section VI discusses
the conclusions to be gained from the work documented within
this report.

II. COMPUTATIONAL SIMULATIONS

Physics is dominated by physical scales (time, energy, velocity,
length, charge, etc.). One wouldn’t model the sun with ambient
room temperature and pressure conditions, nor would one
model a shockwave with incompressible fluid flow. In our
choice of numerical software/operator we have let the physics
drive us. In our plasma kinetic model for example there are
(1) sensitive dominant species, N (dom)

α /η
(dom)
α with N being

the species number and η being the log10 of that species
number (ηα ≡ N(α)) (2) dominant timescales τ (dom) and (3)
dominant interaction between species (how do species grow
and decay as a function of time?). The dominant scales that
we have uncovered with this analysis have helped us form the
recommendation for a viable, modular evolution of the ESD
simulation toolset.

The hydrodynamics that are part of ESD events exhibit
nonlinear hydrodynamic waves. There are a multitude of
hydrodynamic solvers existing at LANL. We have chosen to
use Fierro [21], [22] with which we have performed past work
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[12], [13]. Fierro is an Arbitrary Lagrangian Eulerian (ALE)
code. We have used solely the Lagrangian capability of Fierro,
see Figs. 5 and 6 for a schematic showcasing the difference
between Eulerian and Lagrangian codes and ALE.

Lagrangian

Eulerian
Fig. 5: Cartoon schematic of Eulerian versus Lagrangian
perspectives for tracking material with the fluid dynamic
conservation equations. Schematic courtesy of Donald “Trip”
Haynes. The green blob in the lower part of the figure is
what the light blue Lagrangian code would be in the Eulerian
description.

Old Cell

New Cell

Fluxed into another cell
Fluxed into new cell

Fig. 6: A schematic showing how material is fluxed into one
cell or another in the Arbitrary Lagrangian Eulerian (ALE)
algorithm.

The geometry of the simulations we are considering is shown
in Fig. 7 and Fig. 8. The purple volumes approximate the
domain of an ESD event in our simulations.

Figure 7 shows the effective domain in our simulations with
the purple rectangular prism which is one cell thick in the
z direction, and is bounded by the y − z plane at x = 0
and the x − z plane at y = 0. The grey boundary wall
represents a reflecting boundary conditions at the domain edge.
Our simulations model a cylindrical ESD event occurring at
the center of an infinitely long, hollow, perfectly reflecting
rectangular prism. The blue cylinder is an approximation for
the spark channel, with the yellow object signifying the spark
event.

Reflecting boundary walls

Cylindrical channel
Spark Event

𝑥 − 𝑧 plane
y − 𝑧 plane

Simulation 
Domain
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Fig. 7: Cartoon schematic of the ESD simulations.

Figure 8 shows the cylindrical spark channel in more detail.
We assume that the spark channel obeys both axial symmetry
in z (Tz) and rotation symmetry φ in the x−y plane (SO(2))
about the axis of symmetry. The white text shows the “pie
slice” that our simulation domain approximates in cylindrical
geometry bounded by the green and red lines of the x and y
coordinate axes. The yellow arrow shows the radial direction.
This figure also shows the purple simulation domain to be one
cell thick, approximating axial symmetry, in our inherently 3D
hydrodynamic code.
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�

Fig. 8: Cylinder schematic of the ESD simulation.

In our prior work examining hydrodynamics arising from
ESD events we noted three distinct regimes, Fig. 9: expanded
cells whose center of mass advected away from the axis
of symmetry, compressed cells near and right behind the
shock, and finally the undisturbed mesh simulating quiescent
material. These flow regimes occurred at later times after a
nonlinear hydrodynamic wave propagated away from the axis
of symmetry. These regimes of flow have analogues in other
experimental and numerical studies that study hydrodynamic
advection [23], [24], [25].

Undisturbed Mesh

Cells advected away from Axis of 
Symmetry (r = 0)

Compressed cells in Shock

𝑥

𝑦

Fig. 9: Sample simulation result with distinct, annotated
regimes of flow at at specific instant of time. The cylinder
axis, spark axis ẑ, is coming out of the page toward the reader.

To conclude this section we would like to state that the
combination of the plasma kinetics, circuit, and hydrodynamic
models is not a magnetohydrodynamic (MHD) simulation.
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MHD simulations are inherently non causal due to their
ignoring of eddy currents in Maxwell’s equations. We wish
to obtain the right answer for the right reasons to obtain
insight regarding dominant physics inherent within ESD events
that contribute to various energy terminuses with our current
combination of physics.

III. PHYSICAL ANALYSIS

The constituent physics of ESD events have physical scales
that span orders of magnitude from ps to ms and from nm
to mm. In this section we delve into the deeper details of the
plasma kinetics, the fastest timescale physics within threshold
sparks, in order to glean insight into what numerical operator is
appropriate. This will be done by: analyzing dominant species
N (dom)/η(dom) at equilibrium for fixed electron temperature
kTe; timescales of equilibration τ(eq); and interactions from a
Jacobian matrix (to be described later).

A. Chemical Kinetics

This section was excerpted and adapted from an unpublished
report, “Electrostatic Discharge Physics,” by John W. Rose,
Claudia A. M. Schrama, Sarah C. Hinnegan, Jonathan Baro-
lak, Forrest Doherty, Daniel E. Adams, P. David Flammer, and
Charles G. Durfee (Colorado School of Mines, 2020).

1) ESD: Introduction, Definitions, and Assumptions: Electro-
static discharge (ESD) is the rapid (≤ µs timescale) neutral-
ization of charge between two statically-charged objects in
close proximity. ESD begins with the electrical breakdown
of the air gap between objects, resulting in the formation of
a conductive, transient plasma filament (spark) that bridges
the gap. Fast current pulses from ESD represent a threat
to sensitive devices such as explosive detonators due to the
possibility of rapid energy deposition.

a) Discharge current and victim load: Here the sensitive
device in question is abstractly represented as a resistive
“victim” load in a circuit. The energy dissipated in the victim,
Ev , is found as a function of time t via

Ev(t) =

∫ t

0

I(t′)2Rv dt
′,

where the resistance Rv is assumed to be a constant property
of the victim. If Ev(t) exceeds critical values within a certain
duration, the victim can experience an adverse response.
Therefore, the time-dependent current I(t) is a key quantity
of interest for the CSM-LANL ESD initiative.

b) Circuit Models: The charged objects constituting the ESD
system are assumed to be represented as circuit elements by
a capacitance C and an inductance L. In the worst case,
the victim Rv is in series with these elements and the time-
dependent spark resistance Rs(t). This circuit is depicted in
Fig. 10 and is an applicable model when the discharge occurs

C

L

Rs(t)

Rv

I(t)

Fig. 10: Simple circuit model of ESD.

between two conducting surfaces (electrodes). Although this
circuit can be written as a 2nd order ODE for the capacitor
charge Q(t), it can be more convenient to write it as a coupled
system of 1st order equations for I(t) and Q(t),

dQ

dt
= −I (1)

L
dI

dt
= −(Rs +Rv)I +

Q

C
, (2)

subject to the initial conditions I(0) = 0 and Q(0) = CV0,
where V0 is the initial voltage across the capacitor. The initial
stored energy in the circuit is E0 = CV 2

0 /2, and thus the
ESD problem can be restated as finding the fraction of E0
that constitutes Ev , with the remainder dissipated in the spark
through Rs(t).

c) Spark Resistance: Here we assume the spark gap geometry
approximates parallel plate electrodes with a uniform electric
field of magnitude E. The spark channel is taken to be a
cylindrical filament with uniform properties over its volume
V , shown in Fig. 11, with a fixed gap spacing of zs. The spark

+

-

E

rszs

Fig. 11: Geometry of idealized cylindrical spark channel
between parallel plate electrodes. Spark radius rs has been
exaggerated relative to electrode spacing zs for clarity (typi-
cally rs � zs).

radius rs(t) is generally a function of time and increases due to
gas heating and expansion. Because the electromagnetic skin
depth of the spark plasma is large relative to typical values
of rs, the electric field E from the electrodes is not screened
within the spark channel [26]. With an axially-uniform cross
section of As = πr2

s , the spark resistance Rs is [27]

Rs =
zs
Asσ

=
zs

πrs(t)2σ
≈ zs
πrs(t)2eneµe

, (3)

where σ is the electrical conductivity of the spark plasma.
Because the electron mobility µe typically exceeds the ion
mobility by roughly two orders of magnitude [28], the con-
ductivity can be approximated as σ ≈ eneµe, where e is the
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magnitude of the electron charge and ne is the electron number
density. ne is related to the total number Ne of electrons in
the channel as ne = Ne/V .

2) Kinetic Model and Equation System: Rather than start with
the molecular species of air with their more complex kinetic
processes, the focus here was on analyzing sparks in a pure
monatomic gas for simplicity. Atomic hydrogen was chosen
for its simple energy level structure and the availability of cross
section data for electron scattering. The reactions considered
in the model included:

• Elastic collisions: e+ H(n) 
 e+ H(n)
• Ionization/3-body recombination:
e+ H(n) 
 e+ e+ H+

• Excitation/de-excitation: e+ H(n) 
 e+ H(n+ 1)
• Spontaneous line emission: H(n+ 1)→ H(n) + ~ωph
• Radiative recombination: e+ H+ → H(n) + ~ωph

where n = 1, 2, 3, . . . , nmax is the principal quantum number.
The value nmax is a cutoff to the higher excited states attainable
by an atom due to the presence of nearby atoms in the gas —
in other words, the volume available to the electron orbital
is finite. The ionization cross sections were calculated for
arbitrary n using the formula of Vriens and Smeets [29],
while the excitation cross sections for transitions n→ n′, with
n′ > n, were taken from the formulae of L. C. Johnson [30].
Although more recent data are available, these cross sections
were chosen for their simple analytical forms that facilitated
computation of closed expressions for the rate coefficients.
Cross sections for radiative recombination and Einstein Aij
coefficients for spontaneous emission were taken from semi-
classical formulae in Raizer and Zel’dovich’s book [31].

For binary collisions (e.g. ionization, excitation, and radiative
recombination), the rate coefficients Kij and Arij (for radia-
tive recombination) were calculated assuming a Maxwellian
electron energy distribution function (EEDF),

Kij(kBTe) =

∫ ∞

0

v(ε)σij(ε)ε
1/2f(ε) dε (4)

=

√
2

me

∫ ∞

0

εσij(ε)f(ε) dε

f(ε) =
2√

π(kBTe)3
exp

(
− ε

kBTe

)
,

where the EEDF has been normalized as
∫∞

0
ε1/2f(ε) dε = 1.

Here i and j denote the initial and final state of the atom,
respectively, with values i = 1, 2, . . . ,N = nmax + 1 cor-
responding to H(1),H(2), . . . ,H(nmax),H+. The 3-body re-
combination rates Kr

ij and de-excitation rates were calculated
using the principle of detailed balance (see Appendix for
details).

Defining the N ×N collisional frequency matrix ν as

νij =





Kjine, i 6= j 6= N
Kr
jin

2
e, i 6= j = N

−∑k 6=j νkj , i = j

and an N ×N matrix a for the emission coefficients,

aij =





Aji, i < j 6= N
Arjine, i < j = N
−∑k 6=j akj , i = j

0, i > j

,

the rate equation system for the numbers of atoms in each
state, vectorially denoted as N = [N1 N2 N3 . . . NN ]T, can
be written as

d

dt
N = νN + aN. (5)

(Alternative notation used in subsequent plots: N =
[N1 N2 N3 . . . Ni]

T where NN = Ni is the total ion num-
ber.) For the emission processes, the plasma is assumed to
be completely optically thin so that the elements below the
diagonal in a are zero (no absorption).

Defining N0 =
∑
N =

∑N
j=1Nj as the total heavy species

number, we see that by taking ν and summing its columns,
we obtain dN0/dt = 0. In other words, N0 is a constant
because the number of nuclei is conserved — atoms can only
change their ionization stage, not their nuclear state, based
on the reactions considered here. (Recall we are considering
“low-temperature” ∼ eV plasmas here.)

As a concrete example, consider a model with
nmax = 2, resulting in N = 3 states (1: ground
H(1), 2: excited H(2), 3 or i: ionized H+). Equation
(5) can be written element-by-element in this case as

d

dt



N1

N2

Ni


 =



−(K12 +K1i)ne K21ne Kr

i1n
2
e

K12ne −(K21 +K2i)ne Kr
i2n

2
e

K1ine K2ine −(Kr
i1 +Kr

i2)n2
e





N1

N2

Ni




+




0 A21 Ari1ne
0 −A21 Ari2ne
0 0 − (Ari1 +Ari2)ne





N1

N2

Ni




where N3 = Ni is the total ion number and the Kij , Kr
ij , and

Arij coefficients are generally functions of electron temperature
Te or the EEDF. For the condition of quasi-neutrality,

Ni = Ne = neV. (6)
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a) Energy equations for electrons and heavy species: In
general, the electron and heavy species temperatures, Te and
Tg respectively, vary as a function of time due to energy
transfer processes in the plasma. In turn, the rates of excitation,
ionization, and recombination will also vary in time as the
spark develops. To find the time dependence of these tem-
peratures, energy conservation equations for the electrons and
heavy species can be formulated and solved simultaneously
with the level population equations (5). Taking the channel
volume V = πr2

szs to have spatially-uniform properties, the
overall time-dependent energy balance for the spark is

dE
dt

=
dQ
dt
− P dV

dt
,

where E is the total internal energy, Q is the net heat
source, and PdV/dt is the work done by the channel when
expanding into its surroundings. P is defined here as the
total pressure exerted by the channel on its surroundings.
For a plasma consisting of electrons and monatomic heavy
species, E is taken to have only the translational degrees of
freedom, E = (3/2)NkBT , where N = N0 + Ne is the
total number of particles. The electronic excitation of the
atoms and ions is accounted for in the population equations
(5), so E doesn’t include this degree of freedom. However,
electron-atom collisions make a contribution to the heat source
dQ/dt. Here, the possibility that electrons may have a different
temperature from the heavy species — due to disparities in
energy transfer during elastic collisions between electrons and
atoms — calls for the use of separate energy equations,

d

dt

(
3

2
NekBTe

)
= I2Rs − Q̇in − Q̇m − Q̇fb − Pe

dV
dt

(7)

d

dt

(
3

2
N0kBTg

)
= Q̇m − Pg

dV
dt
, (8)

where Ne is the total number of free electrons, N0 is the total
number of atoms and ions, Pe is the electron pressure, and Pg
is the gas pressure (with total P = Pe+Pg). Q̇in and Q̇m are
power source/sink terms for inelastic and momentum transfer
collisions, respectively. To simplify calculations, the N × N
transition energy matrix E is defined as

Eij =





εH/i
2, i < j = N

εH(1/i2 − 1/j2), i < j < N
0, i = j

−Eji, i > j

where εH ≈ 13.6057 eV is the Rydberg energy. As an example,
for N = 3 states E is written explicitly as

E(N = 3) =




0 3εH/4 εH
−3εH/4 0 εH/4
−εH −εH/4 0


 .

Using the element-wise (Hadamard) product �, the terms Q̇in
and Q̇m have the form [32],

Q̇in = −
N∑

i=1

N∑

j=1

EijνijNi = −
∑

((E� ν)N) (9)

Q̇m =
2me

M
νmNe

(
3

2
kBTe −

3

2
kBTg

)
(10)

=
3me

M
νmNe (kBTe − kBTg) , (11)

where me is the electron mass and M the atom mass, which
is nearly identical between neutrals and ions. In Q̇m, the
smallness of the momentum transfer fraction 2me/M is one
reason why Te � Tg unless νmNe becomes large (e.g. near
full ionization). The method for calculating the momentum
transfer collision frequency νm is discussed in the Appendix.

The term Q̇fb in (7) denotes power loss by the electrons due to
free-bound (radiative recombination) processes. This has the
form

Q̇fb =

nmax∑

n=1

Q̇fb,n

=
NeNi
V

nmax∑

n=1

∫ ∞

0

(ε+ εion,n)︸ ︷︷ ︸
photon energy

v(ε)σrr,n(ε)ε1/2f(ε) dε, (12)

where εion,n = εH/n
2 is the ionization energy from level

n and σrr,n is the radiative recombination cross section to
level n. In general, there are also free-free transitions (e.g.
electron-ion bremsstrahlung) with an associated loss term Q̇ff
in the electron energy equation (7). However, for kBTe �
εion,1 = εH, typical for plasma conditions considered here,
the energy loss to radiative recombination greatly exceeds the
bremsstrahlung losses [31]. Therefore, Q̇ff is neglected in
subsequent calculations.

In deriving equations (7) and (8), it has been assumed that the
neutral atoms and ions thermally equilibrate rapidly through
elastic collisions and thus share a common temperature. Also,
the Joule heating term I2Rs is present in only (7) because (3)
makes the approximation that electrons are the predominate
contributor to the electrical conductivity.

B. Dominant Species: Critical Points

The chemical kinetics differential system described in Sec-
tion III-A is a set of coupled first differential equations
with ns = N equations. There are certain common features
that nonlinear differential systems have in common: critical
points; critical point stability (neutral, saddle, stable, unstable);
composition space ΓC flow; basins of attraction; etc. There are
two consideration that restrict physically allowable solutions
in this composition space ΓC : conservation of species number
(
∑ns
α=1Nα = N0 with N0 being the total number of parti-

cles) which projects ns dimensional species dynamics onto
an ns − 1 dimensional manifold; and positive, real number
values. Within this allowable ΓC there exist only two critical
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points that we have numerically found while fixing electron
temperature kTe (in units of eV), volume V , and applied
electric field ~E. These two fixed points correspond to an
unstable source (repeller) whose equilibrium value contains
has only nonzero species amount in the ground species i.e.
~N (eq) = {N0, 0, 0, ..., 0} (N

(eq)
α = 0 for α 6= 1) and a stable

sink (attractor) with finite values of species number in all the
species populations i.e. N (eq)

α 6= 0. The basin of attraction of
the stable sink is all allowable composition space ΓC , except
for the unstable source which is a set of Lebesgue measure
zero in the ns − 1 dimensional space.

We may intuitively think of these two allowable critical points
as being on top of windy mountain ready to tip over at
any moment (unstable source), or being in the middle of
deep valley (stable sink), see Fig. 12. To mathematically find
the critical points of the ns dimensional chemical kinetic
differential system (ns ∈ {3, 4, 10}) we may set the evolution
equations detailed in Section III-A equal to zero. This may be
written as

d ~N

dt

∣∣∣∣
~N(eq)

= ~0 . (13)

Unstable Source

Stable Sink

Fig. 12: Critical points cartoon.

Plots of the solutions to these differential equations as a func-
tion of fixed electron temperature kTe where k is Boltzmann’s
constant and and Te the actual temperature of the electrons
may be seen in Fig. 13. Figures 13a to 13d shows the solutions
to Eq. (13) for ns equaling 3, 4, 10, and a zoomed plot of
ns equaling 10, respectively. For low temperature the ground
species N1 dominates while at higher temperature (> 2 eV) the
ionized state Ni dominates. Consistently within these plots we
may observe that between 1 and 2 eV the dominant species at
equilibrium switches from ground to ionized. An interesting
thing to note, though, is the behavior of the excited states
as more and more species are included within the model.
For moderate electron temperatures (≈ 2− 4 eV) the excited
states have a non-insignificant amount of the conserved total
population number within the differential system and they
“eat away” at the total dominance of the equilibrium ionized
species number N (eq)

i . However, as before with the ground
species, at higher electron temperatures they too begin to erode
away and the ionized species recovered its dominance.

With the dominant equilibrium species populations found for
a fixed electron temperature, volume, and applied electric field
we may begin to ask the questions as to what changes once
temporal dynamics and interactions are allowed. To further
analyze our constructed differential system, we may quantify
how long it takes for an individual system to reach this

N1

N2

Ni
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Fig. 13: Critical points found from the chemical kinetic
differential system used within this work.

equilibrium for fixed electron temperature, and how it gets
there.

C. Dominant Timescales: Lyapunov Functions

To more readily answer the question of how long it takes to
get from the mountaintop to the valley we perform a change
of variables to better visualize the dynamics inherent within
this complex, interwoven differential system. As scientists and
engineers, we prefer simpler, less complicated answers than
convoluted ones! Oftentimes this boils down to performing a
rescaling such that the observed relationships are no longer
complicated but linear. To place our species compositions into
a linear space we take a log base 10 transformation

ηα ≡ log10 (Nα) s.t. ηα ∈ {η1, η2, ..., ηns} .

with ηα being the corresponding exponent 10 would have to
be raised to obtain Nα. With these new variables we may
define a normalized positive definite distance function called
a Lyapunov function Vη̃ [33]. The functional form of this
Lyapunov function

Vη̃(t; ~η) =
1

η0

√√√√ 1

ns

ns∑

α=1

(
ηα(t)− η(eq)

α

)2

(14)

with Vη̃ being the scalar output of the Lyapunov function, t
being the time the Lyapunov function is evaluated at, ~η being
the ns dimensional vector that is input into the Lyapunov func-
tion, η0 ≡ log10N0 being the normalized base 10 logarithm of
the ambient species number, η(eq)

α the equilibrium population
of species ηα, and the the root mean square operation a
positive Euclidean distance metric |~η(t)−~η(eq)|. This function
calculates the normalized distance away from equilibrium.



10

Near equilibrium many systems may be treated as linear and
thusly we perform a linearization of the solution space near
a critical points to determine its stability. Because the critical
point ~η(eq) is stable, we may we treat the solution as asymp-
totically approaching the fixed points. Due to this asymptotic
nature, the solution will never mathematically reach the critical
point, but will computationally due to underflow and round
off error. To avoid such issues, we stipulate a minimum small
distance in the normalized space ε that once the Lyapunov
function has reached within we consider the solution to have
reached equilibrium. We call the time for this to occur the
equilibration time τeq . Mathematically this is

Vη̃(t; ~η) < ε︸︷︷︸
small

⇒ t ≡ τ (eq) .

A visual cue for this occurring is Fig. 14 which shows the
system equilibrium point, ~η(eq), being a rabbit that is tied down
or not depending on whether we fix the electron temperature
for the simulation. The system state may be thought of a dog
chasing this rabbit. Once the dog is within a hypersphere of
radius ε then the dog would be considered to have caught the
rabbit. The system will have equilibrated (asymptotically)!

𝜀 𝜂("#)

𝑉!"

Fig. 14: Lyapunov Exponent visualization.

Continuing using the differential systems analyzed in Sec-
tion III-B we calculate both the Lyapunov function for varied
electron temperature, Fig. 15, and the equilibration times
τ (eq), Fig. 16. Figures 15a to 15c show how as the electron
temperature kTe is increased the sudden and rapid falloff for
the Lyapunov function. For most of the simulation in the
log-linear plot, we observe four distinct, sequential behavior
regimes:

1) Initial decrease from the initial condition’s value
2) Approximately constant Vη̃(t)
3) Rapid fall of Lyapunov function Vη̃(t)
4) Numerical noise from the software shown in the purple

box

From Figs. 15a to 15c we excise the location where the
Lyapunov function is less than ε = 1.0e−7. The results of this
are shown in Fig. 16. A log-log plot was not used due to the
lack of decades of electron temperature kTe dynamics/data.
Note that as we vary the ns dimension of the composition
space ΓC the overall structure of the line doesn’t change
that much. The discrete jumps/hops in the lower right of the

plot at from the discrete nature of the time step used‡. The
major takeaways from this plot are the disparate times with
which the system (dog) takes to asymptotically equilibrate
to the fixed equilibrium solution ~η(eq) (rabbit). For “low”
temperatures (< 1.5 eV which is the majority of the numerical
in our simulations), the system takes over a microsecond to
equilibrate, while for higher temperature models (the core of
the spark channel along the axis of symmetry) the systems
equilibrates very quickly, sometimes in less than 1 ns. To tie
this back to our dog-rabbit analogy, this corresponds to an old,
arthritic lap dog giving chase vs. a young, healthy, and hungry
German Shepard!

From these results we now have an appreciation for how
fast our systems can reach their equilibrium/stationary points.
However, the question still remains of how they get there.
We answer this question in the next section, Section III-D by
examining a mathematical tool construct called the Jacobian
matrix.

D. Dominant Interactions: Jacobian Matrix

In conservative dynamical systems, of which all time in-
variant Hamiltonians are, the phase space§ Γ hypervolume
is conserved [34]. However, only a small class of realistic
differential systems are conservative; most are dissipative, or
driven-dissipative dynamical systems¶. The basins of attraction
of the two allowable fixed points in the differential systems
we consider were calculated in Section III-B, and are itself
(the unstable source), and all physically allowable space in ΓC
(the stable sink). This corresponds to a dissipative differential
system [35]. If we were to sprinkle a cloud of initial conditions
in this composition space ΓC we would observe that their total
volume V would decrease as a function of time. This volume
would eventually collapse onto the stable sink like air being
sucked out of shrink wrap surrounding clothes getting smaller
and smaller. To prove this mathematically, we may write out
how the evolution of a density of initial conditions ρ(~η, t)
changes as a function of time

d

dt
ρ(~η, t) ≡ ∂ρ

∂t
+

ns∑

α=1

∂ρ

∂ηα

dηα
dt

, (15)

where we have expanded out by the chain rule the implicit
dependence ηα dependence on time. Thusly, the evolution of
the density ρ depends explicitly on the how the various species
depend on time if we rearrange Eq. (15). In Hamiltonian

‡Numerical solutions to differential systems discretize both space and
time. The minimum resolution is time here was 1 ns, hence the jumps/hops
at 1,2,3,4, and 5 ns whose vertical distance is nonuniform in the Fig. 16.

§Within this document we have referred to two different spaces: compo-
sition space and phase space. Composition space refers to the space R+,ns

+
within which the chemical kinetics species reside, while the total phase space
refers to the total space the dynamics residing the total differential system
where the electric field, electron temperature, and all other variable present
in the differential system. The composition space has been referred to as ΓC .
The plasma phase space shall be ΓP . The total phase space is Γ ≡ ΓC⊕ΓP
where ⊕ is the vector space’s direct sum.

¶The dissipative nature of these systems is closely tied to the second law
of thermodynamics dS ≥ 0 i.e. global entropy production
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Fig. 15: Lyapunov function Vη̃(t) as a function of time.
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systems it may be shown from Hamiltons equations || that
∂ρ/∂t = 0. In our analysis, however, ∂ρ/∂t equals dηa/dt
with the assumption that volumes in ΓC are VΓC ≡

∏ns
α=1 ηα,

which implies that ρ is linear in each ηα and that ∂ρ/∂ηα = 1.

We define the Jacobian matrix as

Jαβ ≡
∂

∂ηη

dηα
dt

(16)

with α and β being indices ranging from 1 to ns we may
find the evolution volumes within this space as the trace of
the matrix, Tr(Jαβ), in Eq. (16). Recall from general matrix
theory that the trace of a matrix is the sum of its eigenvalues,
and the determinant is their product. Due to conservation of
species, the determinant of these matrices will always be zero
(thusly Jαβ is noninvertible/diagonalizable) while the trace is
simply the sum along the main diagonal of the square matrix
Jαβ .

In general, volumes in the composition space ΓC will not
evolve linearly due to the nonlinear nature of the equation
presented within our nonlinear differential systems. Figure 17
shows a sample volume evolution in the ns = 3 space spanned
by η1, η2, and ηi. A cloud of initial conditions contained in
V(0) will evolve under in time to the mutated volume V(t)

||d~q/dt = dH/d~p and d~p/dt = −dH/d~q with ~q being the usual
position coordinate, ~p being the usual momentum coordinate, H being the
time invariant Hamiltonian, and t being time

whose structure will be given by the trace of Eq. (16). To aid
in visualizing the differential systems interaction within the
ns − 1 dimension allowable space**, we my construct matrix
plots of the Jacobian matrix at different times. Figures 18
to 20 show sample images of the Jacobian matrix at the
noted selected times. Each subfigure within these figures
contains two different matrix plots that correspond to positive
(green) and negative (blue) entries in the matrix. The color
bar legend shows the base 10 exponent normalized relative
to the maximum growth and decay rates occurring within the
entire simulation. The darker colors are smaller growth(decay)
while the brighter color are higher relative growth(decay). The
simulations were run to 400 ns at a fixed electron temperature
of 1.5 eV a representative calculation for expected channel
dynamics/parameters.
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V(t)

Fig. 17: Phase space volume evolution is determined by the
trace of the Jacobian matrix, Tr (Jαβ). The shown phase
space volume V corresponds to a cloud of initial conditions
aggregated and evolved forward in time.

Figures 18 and 19 contain three separate matrix times slices
that contain each of the relevant dynamical steps within the
fixed temperature simulations, while Fig. 20 contains six
different matrix time slices to understand simulations dynamic
interactions. The color in the β column of the α row corre-
sponds to how much species ηβ is contributing(interacting) to
species ηα’s growth(decay).

The initial condition for growth(decay) is shown in Figs. 18a
and 19a. As time progresses, the relative value of the growth

**Recall that conservation of total species number will restrict the ns
dimensional composition space to a ns − 1 hypersurface within that space.
Flow in that space can only occur on that lower dimensional manifold.
Mathematically this is because to one eigenvalue λγ of the Jacobian matrix
Jαβ is 0 due to conservation of total species number.
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(a) t = 0 ns (b) t = 199 ns

(c) t = 400 ns

Fig. 18: Jacobian matrix, Jαβ , movie snapshots with ns = 3

changes as can be seen in Figs. 18b and 19b. At late time
the simulation’s dynamics and interaction completely change,
and we can readily observe that all the diagonal elements are
negative, correspond to volume “shrink wrapping” around the
stable equilibrium. During the simulation interaction between
different species change, see which cells in the matrix plots
change from green to blue. In addition, we may be note that
the brightest colors are the cells adjacent to the main diagonal
forming an interaction ladder of nearest neighbors.

(a) t = 0 ns (b) t = 180 ns

(c) t = 192 ns

Fig. 19: Jacobian matrix, Jαβ , movie snapshots with ns = 4.
The last shown time is t = 192 ns due to the simulation having
reached equilibrium.

As we increase the dimensionality of our considered differ-
ential system for ns = 3, 4 and 10, we may delve deeper
into the relationships between variables. As before Fig. 20a
shows the initial growth rate of each species correlating to all
other species. As time marches forward in Figs. 20b to 20e,
we observe that the decay of many species is associated with
the ionized species ηi. As before, though, a common result
through all time is that the dominant mode of interaction is by
the interaction ladder of nearest neighbors, with each species
wishing to become further excited is to step, one-by-one, up
the ladder to the fully ionized state. In Fig. 20f we observe that

as in Figs. 18c and 19c the negative entires all lie along the
main diagonal, corresponding to “shrink wrapping” the stable
sink.

(a) t = 0 ns (b) t = 48 ns

(c) t = 82 ns (d) t = 116 ns

(e) t = 127 ns (f) t = 150 ns

Fig. 20: Jacobian matrix, Jαβ , movie snapshots with ns = 10.
The last shown time is t = 150 ns due to the simulation having
reached equilibrium.

The eigenvalues and eigenvectors of this matrix provide an
alternative way inform us as to the critical interactions and
timescales. Eigenvalues of a capacitive discharge system with
ns = 3 may be seen in Fig. 42 in Section V-E.

The differential system considered within this report can have
arbitrary dimensionality depending on the accuracy one wishes
to attain by modeling sample kinetic systems. However, there
is a cost to this increasing dimensionality, greater computa-
tional expense. With higher dimensional (bigger ns) systems,
performing requisite analysis by calculating the dominant
species, timescales, and interactions becomes more compu-
tationally burdensome. At some point we must ask ourselves
the question as scientist and engineers with a final deliverable
to meet: "What is “good enough” for our purposes?". One
way to lower computational expense of this chemical kinetics
analysis is to perform model reduction techniques from one
of a multitude of perspectives: dynamical systems, statistical
mechanics, and data science. Section IV goes into detail about
the mathematical and preliminary results of finding the slow
invariant manifold (SIM)††

IV. MODEL REDUCTION

Section III went into great detail delving into our considered
ns dimensional chemical kinetics differential system attempt-

††Other authors refer to this concept as the slow manifold. Here we shall
use SIM to maintain consistency with cited literature.



13

ing to understand the dominant dynamics within in so that they
could be leveraged in our ESD simulation toolset. We came to
the conclusion in Section III-D that although highly detailed
and accurate simulation are required from the microscopic
perspective in the problem, the macroscopic energy budget
balance behavior is mainly influenced by schemes that capture
most of the relevant dynamics. Attempting to bridge these
two needs of high fidelity for our role in creating a predictive
toolset and also maintain computational tractability we have
chosen to use reduction techniques to uncover the underlying,
driving dynamics on the long timescale. These long timescale
dynamics are mathematically a lower dimensional manifold,
commonly referred to as a Slow Invariant Manifold (SIM)
[36], [37], [38].

A. The Intrinsic Low Dimensional Manifold

In the field of combustion and flame kinetics mathematical
techniques have been formulated to find objects in composition
phase space ΓC called the Slow Invariant Manifold (SIM).
The SIM is a lower dimensional structure in composition
space that draws all composition trajectories toward it on
fast timescales, while trajectories along it advance slowly.
The techniques were pioneered by Mass and Pope in 1992
[36] with application to coupled systems of nonlinear first
order ODEs. These techniques gone through multiple different
variations and refinements through the decades [39], [40].
Indeed, the idea of a slow manifold is not limited to the field
of chemical kinetics [41].

The application of this technique pioneered by Maas and
Pope is called the Intrinsic Low Dimensional Manifold. The
basic idea of this technique is to project the fast dynamics
(zapping like lightning) onto the slower dynamics (oozing like
honey) of the kinetic differential system. As an illustration
consider the following coupled, two dimensional, first-order,
linear differential system

~̇x = V ΛV −1
︸ ︷︷ ︸

A

~x

with ~̇x being the first time derivate of ~x = (x1, x2)T . The
matrix V ΛV −1 is the diagonalized version of a constant
coefficient matrix A. V is the matrix whose columns are the
eigenvectors of A, and Λ is a diagonal matrix whose diagonal
elements are the eigenvalues of A. Consider the differential

system whose V matrix is V =
[
v1 v2

]
=

[
1√
2

1√
10

1√
2

3√
10

]

with the nonorthogonal eigenvectors ~v1 = [ 1√
2

1√
2
]T and

~v2 = [ 1√
10

3√
10

]T . By varying the diagonal values of Λ (λ1 and
λ2) we may observe disparate time scale behavior. Keeping
λ1 ≡ λs a constant −1 we vary λ2 = {−2,−5,−10} ≡ λf
for slow and fast eigenvalues, respectively. The results of
varying this second eigenvalue associated with the eigenvector
~v2 is shown in Fig. 21. This figure contains the three different
plots as λ2(λf ) is varied. The 10 black dots correspond to

percentage completion along the integrated time path from
0 to to tend with four different initial conditions {~x(ic)} =
{(5, 1), (2, 5), (−4,−1), (−1,−4)}. The final time was set to
5 nondimensional time units. The blue and red text correspond
the fast (zapping) and slow (oozing) eigenvalues and the
associated eigenvectors denoting direction.

Figure 21a shows low disparate ratio λf/λs. Note for the
four initial conditions how their linear solution behaves in
this two dimensional space. The initial conditions along the
higher value eigenvector zap into the stable equilibrium point
of ~x(eq) = (0, 0), while the initial conditions with components
in both ~v1 and ~v2 quickly zap out their projection along ~v2

to ooze/glide in along the slower eigenvalued eigenvector ~v1.
As we increase the ratio λf/λs we see how these dynamics
become more pronounced.

Our goal with the ILDM method is to uncover the lower
dimensional motions along the slower direction like ~v1 and use
that to reduce the dimensionality of the full differential system.
For this simple, linear two dimensional model the dynamics
are readily obtained by parameterizing the slow variable as
the projection of the total dynamics onto the eigenvector ~v1.
However, for higher dimensional examples, see Fig. 22, that
have nonlinearity and changing eigenvalues as a function of
location in phase space these dynamics are more complicated
and a more rigorous method is required in order to determine
the SIM/ILDM.

In the dynamics that we observe in our constructed dif-
ferential system we observe three distinct species clusters
present within the simulations, Fig. 23, implying that the
minimum dimensionality of the system is three: ns,min ≈ 3.
To determine if this is true we have plotted parametric pairwise
plots of the variables ηα vs ηβ in Figs. 24 to 26. These plots
were at fixed electron temperature of 1.5 eV and were run
from t0 = 0 to tend = 400 ns. The colorbar at the right of
every plots shows the implicit, parametric variable time, t. The
horizontal and vertical axes are the nondimensional base 10
exponent of the species η̃α = ηα/η0 where η0 is the total of
all species populations (a conserved quantity).

The constructed ns×ns matrix plots showing (ηα(t), ηβ(t)) :
t ∈ (0, tend) have several interesting observables:

• Only the upper(lower) diagonal parts of the matrix plots
are useful, as the plots are mirrored from on the opposite
side of the diagonal.

• The equilibrium solution is always reached fairly early
on, especially as the dimensionality ns of the system
increases.

• Most of the relationships between the species are linear.
See the lower middle section of Fig. 26 for this.

• Many of the dynamics zap quickly and then ooze along
to the equilibrium solution ~η(eq).

From these observations and the fact that we heuristically
suspect that a three dimensional system is all that is necessary
to capture the relevant dynamics of these vibrational models
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(c) λ2/λ1 = 10

Fig. 21: Progressively disparate ratio of λs/λf , with λs ≡ λ1 and λf ≡ λ2. The numbered black dots correspond to the i’th
times 10 percent completion along the trajectory, ~x(t) where t ∈ (0, tend) with tend = 5. The time colorbar is embedded
within Fig. 21c. The grey arrows show the local direction of the flow in this two dimensional phase space Γ. The blue to red
colored lines are the trajectories of four different initial conditions {~x(ic)}
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dx(1)

dt
= �x(1) + 3

dx(2)

dt
= �x(2) + 3

dx(3)

dt
= �25x(3)

Fig. 22: Three dimensional zap-ooze manifold schematic.
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Fig. 23: Sample chemical kinetics simulation clustering into
three distinct species.

we chose the lower left plot in Fig. 24 as the manifold to
uncover with Maas and Pope’s technique. As described in
the paper by Maas and Pope, we may use conservation of
species to further reduce the dimensionality of the model from
ns = 3 to ns − 1 = 2. Furthermore, by the judicious choice
of a single valued function to parameterize, we choose the

parameterized reaction coordinate as ηi. This simplifies our
analysis considerably from a ns dimensional problem to a 1D
numerical root finding problem.
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Fig. 24: n3 × n3 matrix of parametric phase space plots for a
3 level kinetic system: ground, one excited, and ions.

The equations used in the ILDM analysis are reproduced here
for the reader’s convenience and interest. Beginning with the
evolution equations for the species in the base 10 change of
variables space we have

d

dt
ηα = fα (~η) ≈ ηα,0+

∂

∂ηβ
fα (~η) (ηα − ηα,0)

︸ ︷︷ ︸
Jacobian matrix Jαβ

+O
(

(ηα − ηα,0)
2
)

︸ ︷︷ ︸
ILDM error

(17)
with ηα,0 being the value that is being expanded about,
the SIM, the second term on the right hand side is similar
to the Jacobian matrix Jαβ from our previous analysis in
Section III-D, and the third term on the right hand being error
of order (ηα − ηα,0) which we discard if we are close the point
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Fig. 25: n4 × n4 matrix of parametric phase space plots for a
4 level kinetic system: ground, two excited, and ions.

we are expanding about ηα,0 (the SIM). The Jacobian matrix
analogue may be diagonalized, Eq. (18). This diagonalized
Jacobian may be substituted into Eq. (17).

∂

∂ηβ
fα (~η) = V ΛV −1 =

[
VfVs

] [Λf 0
0 Λs

] [
V −1
f

V −1
s

]
. (18)

The Jacobian matrix is separated into the fast (zap) and
slow (ooze) timescales. Vf (Vs) is the matrix whose columns
are the eigenvectors of the fast(slow) part of the Jacobain
matrix, see Fig. 27‡‡. Λf (Λs) is the diagonal matrix of the
fas(slow) eigenvalues. There are lf (ls) fast(slow) eigenvalues.
The dimensionality of the system is ns = lf + ls. After
substituting Eq. (18) into Eq. (17) and multiplying by the

inverse eigenvector matrix
[
V −1
f

V −1
s

]
and using the product rule

we then have

d

dt
φα = V −1ηα,0︸ ︷︷ ︸

1©
+ Λφα︸︷︷︸

2©
+ ∆ηα

d

dt
V −1

︸ ︷︷ ︸
3©

(19)

with φα being the eigenvector coordinates which are or-
thogonal(transverse) to the SIM for fast(slow) dynamcis, and
∆ηα = ηα − ηα,0. 1© is the term that we solve for along
the SIM, 2© is the term that is defined to be 0 on the
SIM (the zapped out motions in the phase(composition) space
Γ(ΓC)), and 3© is assumed to be approximately zero on the
manifold (the change in the orientation of the fast eigenvectors
is assumed to occur on a scale that is much slower than the
SIM dynamics; the SIM is assumed to have little curvature.).
Finally, we arrive at the equation that we wish to solve
numerically in order to obtain our SIM

⇒ V −1
f ηα,0 = 0 for ILDM . (20)

‡‡Since the eigenvalues of the linearized coefficient matrix of system of
ODEs correspond to inverse time, 1/t, the larger the eigenvalue is the slower
(more oozy) the motion along that characteristic direction will be.

Solving Eq. (20) numerically for the lower left plot shown in
Fig. 24 we obtain the blue points in Fig. 28. The text on the
figure annotates various items that were accomplished. Note
that there were numerical challenges associated with certain
region on the calculated SIM. The green line, a 1D manifold,
is the interpolated SIM, and would be the structure that would
be used to project our ns − 1 = 2 dynamics onto.

As with any numerical method there are some drawbacks
and caveats to applying the ILDM technique. Applying this
technique makes several assumptions, see the reproduced
mathematical derivation above, about the dynamics inherent
within the system. Another very important assumptions that
is made when doing this analysis is that the eigenvectors
do not change direction too rapidly, and that their associ-
ated eigenvalues maintain their relative ordering in Eq. (18)
and Fig. 27 [38]. If either of these assumptions or caveats are
breached, then this method is no longer applicable. This has
not occurred in the any of the differential systems that have
been considered within this report, but it is a consideration
to take into account when applying this dynamical system
approach to dimensionality reduction.

To gird ourselves against the potential of this occurring we
may broaden our dimension reduction options and explore
other possible alternatives. Two other methods have been
briefly explored and a preliminary literature review has been
undertaken to review these two other methods: Boltzmann
grouping which is motivated by the clustering of distinct vi-
bration states within our chemical kinetics differential system,
recall Fig. 23; and a data driven approach called Principal
Component Analysis (PCA). A description of these method-
ologies is given in the next section, Section IV-B

B. Alternative Reduction Methods: Principal Component
Analysis & Boltzmann Grouping

In Section IV-A we showcased a dynamical systems approach
to reducing the dimensionality of our constructed chemical
kinetics differential system. That approach uncovered the un-
derlying slow manifold that is postulated to be inherent within
systems of disparate timescales as evidenced by performed
numerical simulation. The fast timescale eigenvectors are
orthogonal to the manifold; in order to numerically obtain this
structure, we set the directions of those fast motions to zero to
obtain the lower dimensional slow manifold parameterized by
the slow eigenvectors, Eqs. (17), (19) and (20) (ns dimensional
manifold with lf + ls fast and slow directions, respectively).
This approach netted us the interpolated green curve in Fig. 28.

This section describes two other approaches that are motivated
by observations of more detailed chemical kinetics systems
(a statistical physics method), and a data driven approach
motivated by the large amounts of data generated by these
high dimensional rate equations.

Our statistical physics approach, called Boltzmann grouping,
is motivated by the distinct clustering of species in certain sim-
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Fig. 26: n10 × n10 matrix of parametric phase space plots for a 10 level kinetic system: ground, eight excited, and ions.
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Fig. 27: Diagonalized Λ matrix showing the separation be-
tween slow and fast modes of the differential system.
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ulations, see Fig. 29. This figure has several distinct, colored
species groups that all qualitatively evolve together. Boltzmann
grouping seeks to leverage this fact and cluster these distinct

vibrational species together [42], [43]. In equilibrium the
populations of various species levels will be determined by
their relative energy differences ∆Eαβ between vibrational
levels α and β. The methodology detailed in [42], [43] details
how to leverage this fact and reformulate the differential
system to reduce its dimensionality.
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Fig. 29: Groups of species clustering into distinct groups. Re-
ducing methods may be leveraged to establish more tractable
models.

Another method that may be used to reduce the dimensionality
of a differential system is to project the 0D dynamics of the
chemical kinetics differential system onto the most informa-
tive/important finite, low number linear combinations of all the
original chemical kinetics variables. This is called Principal
Component Analysis (PCA) of the coupled, chemical kinetics
differential system [44], [45].
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This is accomplished by:

1) Measuring a matrix, X0, whose dimensions are [ndata×
ns] with ns being the usual number of chemical kinetic
species and ndata being the number of discrete time
points that are being measured. The usual time integration
steps are assumed for this PCA method to work properly.

2) Scaling this data matrix by subtracting the averages of
every measured column variable and also by multiplying
by one over the standard deviation of the distribution,
normalizing the data: X =

(
X0 − X̄0

)
S. The matrix

S is the matrix of the inverse standard deviations of
the column variables of X and X̄0 is the matrix of the
averages of X0.

3) Obtaining a correlation matrix CX = 1
ndata−1X

TX
which measures the correlations of the species with each
other throughout the entire simulation. The correlation
matrix may be diagonalized in the usual way CX =
CX = V ΛV −1 with the matrix V being the matrix
whose columns are the eigenvector of CX . Most of the
correlation matrices’ variance is recorded in the first few
q < ns variables.

4) The PCA variables, which are the largest eigenvectors of
CX may be calculated by X ≈ Xq = ZqV

−1.

The truncated matrix Xq has dimension [ndata×q]. It may be
inserted into the chemical kinetics differential system which
can be reformulated into an appropriate form [44], [45].

Boltzmann grouping (statistical mechanics) and PCA (data
driven) are just two alternatively motivated methodologies that
may be used in order to reduce the dimensionality of the
chemical kinetics system. These techniques may be used to
make the chemical kinetics system more tractable both for
analytical and computational treatment. We seek to utilize
these techniques to evolve our ESD simulation toolset, which
to date in its most useful form has solely implemented a
“blind” heat source that has taken data both from COMSOL
multiphysics chemical kinetics [12] and also from legacy and
current experimental current traces [13]. The details of the
work taking motivation from legacy and current experimental
data is detailed in Section V.

V. HYDRODYNAMIC SIMULATION

Quantifying the energy budget in ESD events is one of the
main objectives of the ESD Weapon Response Initiative. There
are many ways for energy to flow within the interwoven,
constituent physics present within ESD events, Fig. 3. We seek
by architecting a ESD simulation toolset to attack many of
the problems inherent within Weapon Response frameworks
with a (not overly) conservative, physics-based basis. One of
the legs of this basis is the hydrodynamics which we know
dominates the physics far away from the channel. What we
don’t fully know is how much impact early time hydrody-
namic flow advection of thermodynamic variables affects the

characteristic plasma variables of ESD events (spark resistance
Rs, energy/power delivered to victim load Ev/Pv , etc.).

Within this section of the report, we detail how we have
established conservative bounds on the energy going into the
hydrodynamics and shockwave formation/propagation that is
guaranteed to be unavailable to plasma variables of interest.
We do this by: motivating the performed simulations by legacy
and current experimental data; comparing to decades of avail-
able literature; and theoretically verifying against the strong,
intermediate, and weak shock regimes. Finally, we enumerate
the computational intricacy, challenges, and propose a future
path forward of combining the explicit hydrodynamic based
solver whose fastest dynamics are shockwaves (µs/ms) to the
comparatively fast (ps/ns) timescale dynamics of the chemical
kinetics interactions Section III-D.

A. Empirical Heat Source Motivation

In prior work performed by W-10’s R&D arm we looked at
two ways to implement a blind heat source in to a well devel-
oped, mature hydrodynamic code called Fierro [21], [22]. The
first work examined inserting a heat source calculated directly
from an early time evolution of the COMSOL Multiphysics
commercial software for chemical kinetics and hydrodynamic
flow absent shockwaves. The work resulted in the early time
verification of Fierro for use in ESD spark events. The second
arm of the research involved postulating a heat source sub-
stantiated by decades of literature and legacy/current LANL
experiments.

The temporal nature of the heat source is assumed to come
from the Joule Heating term of magnetohydrodynamcis ~J · ~E =
~J2/σ where ~J is the area current density, ~E is the axial
electric field in the channel, and σ is the conductivity of the
medium. Legacy (Fig. 30a) and current (Fig. 30b) experiments
performed at LANL, see Fig. 30, have two common features:
a fast rise time on the order to tens of nanoseconds, and
a decaying exponential envelope. These two features have
informed our choice of q(t) ≡

(
1− e−t/τr

)
e−t/τf .

We assume the spatial nature of the heat source to be Gaussian,
as substantiated by decades of available literature estimating
the spatial structure of the ESD’s channel [46], [47], [48].

Combining these two terms we then have both q(r) and q(t)
which form the basis of the structure for q(r, t). However,
we still have a free parameter for the strength of these terms
for the Joule Heating source (a power density) q0. Based on
conservation of energy (more specifically energy line density
E0/h) over the requisite time and spatial scales we may obtain
an expression for q0, see Eq. (22). A sample plot of q(r, t) may
be seen in Fig. 32.

q(r, t) = q0

q(r)︷ ︸︸ ︷
e−r

2/λR

q(t)︷ ︸︸ ︷(
1− e−t/τr

)
e−t/τf (21)
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Murphy’s legacy current data.
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Fig. 30: Legacy and modern current traces taken by Doug
McHugh (Q-6, LANL) Michael Murphy (Q-6, LANL), Doug
Tasker (Q-6, LANL), and their respective teams. Note the fast
rise time on the order of tens of nanoseconds and the decaying
exponential envelope on the order of hundreds of nanoseconds.
These experiments correspond to inductive discharges (longer
timescale); our current models are capacitive (short timescale)

q0

(
E0

h
, λR, τr, τf

)
=

τr + τf
πλR2τf 2

E0

h
(22)

⌧r = 100 ns
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Fig. 31: Plotted heat source q0 with given, fixed parameters
λR, τr, τf and with a fixed value for E0/h.

The four terms E0/h, λR, τr, and τf form a four dimen-
sional parameter space that may be searched and scanned to
match legacy optical experimental images of ESD events. The
simulation that minimize the metric of shockwave distance
obtained from the legacy optical experimental images of the
ESD events will then be validated. The details of how this is
done are discussed in Section V-B.

B. Hydrodynamic Simulation Validation

A key part of the laboratory’s mission is stockpile stewardship.
This stewardship is underwritten with the marriage of experi-
ment, simulation, and theory. In the past decades, simulation
has come to a forefront. However, we are required to validate
(compare to experiment) and verify (compare to theory) these
simulation’s results to ensure they have high fidelity/credibility
necessitated by the work that we at LANL perform as given
in our mandate.
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Fig. 32: Sample parameter space (τr, τf , λR) for the hydro-
dynamic suite of simulations for fixed E0/h.

To validate the simulations described in Section V-A we
compared to legacy optical imaging data of the direct spa-
tiotemporal evolution of the shocks created by the ESD event.
This data was taken by Michael Murphy, Doug McHugh, and
their collaborators in the late 2000s. This data has been used to
validate our simulation suite. A schematic of the experimental
setup may be seen in Fig. 33 [49], [50], with direct optical
data taken by the framing camera shown in Fig. 34.

Fig. 33: Cartoon for the the Shock Wave Image Framing
Technique (SWIFT) experiment. Laser light is shone and
captures high-fidelity optical images for use in simulation
validation to experiment.

Figures 34a to 34c show the spatiotemporal evolution of the
shock wave away from the axis of symmetry in an ESD
experiment. These images were chosen from an available suite
of data due to their proximity to idealized cylindrical struc-
ture which aided our parameter space validation. Non-ideal
structures, divergence away from cylindrical geometry, and
“fingering” out (as common Lichtenberg figure) phenomena in
lightning all contribute to the breakdown from our simplified
x− y plane quadrant, axially symmetric model.

Lin (1954) introduced a strong shock solution in cylindrical
geometry [51] starting from an infinitely concentrated line
source using a similarity solution. In his solution method
he postulated that the radius of the shockfront as a function
of time was r(t) = S(γ)(E/ρ0)1/4t1/2 with S(γ) being a
tabulated value dependent on material properties with units
of length, E being the energy line density deposited into the
medium, ρ0 being the ambient density, and t being time.
For air S(γ) ≈ 1.009 and ρ0 = 1.00 at Los Alamos’s
altitude. Postulating a fit for the evolution of the shock radius
r(t) = 1.009 × a × tb we fitted to both experimental from
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(a) t− tsoc ≈300ns (b) t− tsoc ≈2.0µs (c) t− tsoc ≈3.6µs

Fig. 34: SWIFT high speed direct optical images detailing
spatiotemporal evolution of an ESD spark event. The gap
between the two electrodes was 6.28 mm while the charging
voltage was 15 kV. The caption below each figure denotes
the time, t, from the start of current, tsoc, that triggers data
collection.

Michael Murphy’s legacy experiment and simulation data
shown within this report.

Table I shows results of fitting equations for experimental
results (exp) and simulation (sim). The value of both types
of fit’s exponents b very close to the theoretical exponent of
1/2. The fitted a value roughly corresponds to the energy line
density in the discharge event. These a values may be used in
order to quantitatively determine the energy guaranteed to be
going into the hydrodynamics.

TABLE I: f

Shot # tsoc (ns) aexp bexp asim bsim
1 -26 to -14 1.54 - 1.58 0.57 - 0.59 1.59 0.56
2 -16 to -8 1.83 - 1.89 0.55 - 0.57 1.89 0.55
3 -12 to 4 1.96 - 2.04 0.54 - 0.57 2.02 0.54
4 -20 to -8 2.00 - 2.06 0.54 - 0.57 2.05 0.54

The shock radius may be determined directly from the high-
speed optical imaging data shown in Figs. 34a to 34c. We took
four different experimental datasets with images of the shock
propagating. Figure 35 shows the location of all four different
experiments with the comparison to Lin’s fit with the values
excised from Table I.

We may validate our simulations by comparing the best fitting
solutions from our available parameter space and compare
that directly to the calculated shock front locations shown in
Fig. 35. Figure 36 shows this comparison directly with the
input energy parameter q0 calculated from the experiments
radial a parameters. One major thing to note is that with these
comparisons the best results were returned with simulations
that had short fall times, which correspond to a capacitive
discharge. Further on in our work we implement a trial
capacitative discharge that couples our hydrodynamics code
which are described in detail in this sections and the chemical
kinetics differential system discussed in Section III and a
circuit coupled ODE. This process is discussed in Section V-E.

Fig. 35: Shock radii captured from high-speed optical data, see
Fig. 34. Four different characteristic experiments were chosen
that exemplify shock dynamics across a range of voltages.

Fig. 36: Fitted shock radii excised from Fig. 35 and compared
to optimized characteristic heat source parameters with the
specified E0/h, τr = 10ns, τf = 10ns, and λR = 100µm

C. Hydrodynamic Simulation Verification: Comparison to
Shock Regime Theory

The last leg of the stool in Fig. 2 we have yet to explicitly
discuss in the context of ESD events and their constituent
hydrodynamics is theory. There has been much done and
worked on in shock theory [52], [31], [53], [54]. We shall
discuss cylindrical shock theory, explicitly: Lin’s strong shock
similarity solution [51], weak shock theory [52], and interme-
diate shock theory [55].

The reduced differential system that Lin solved for the shock
structure behind the strong shock’s shockfront is reproduced
for convenience here in Eqs. (23a) to (23c).
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f ′ =
2η (η − φ) + γφ2

f − (η − φ)
2
ψ

ψf

η
(23a)

φ′ =
f ′ − γψφ
γψ (η − φ)

(23b)

ψ′ =
(ηφ′ + φ)ψ

(η − φ) η
(23c)

The terms in the above equations: f correspond to pressure p
multiplied by the radius of the cylindrical shockwave squared
R2
s so f ≡ p/p0R

2
s where p0 is ambient pressure; φ cor-

responds to radial flow velocity ur multiplied by the radius
so φ ≡ urRs; ψ is the nondimensionalized mass density ρ so
ψ ≡ ρ/ρ0 where ρ0 is ambient density; and η is the normalized
radius (η ∈ (0, 1)) of the characteristic flow variables. Fig-
ure 37 shows the numerical solution (correspondingly colored)
to this coupled differential system for f , φ, and ψ as functions
of η.

f (η)≈ p
p0

γ = 75

ϕ(η)≈ u
c0

γ = 75

ψ(η)= ρ
ρ0

γ = 75
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Fig. 37: Lin’s similarity solution to a strong shock in cylin-
drical geometry arising from an infinitely concentrated line
source of line energy density, E0/h. The horizontal axis is
η ≡ r/Rs where Rs is the radial location of the shock front.

To verify our numerical simulations to cylindrical strong shock
theory we may excise the normalized density profile ψ(η)
from Fig. 37 and compare that or density slices between the
axis of symmetry and the shock radius Rs in our simulations.
Figure 38 shows a 3D plot of the normalized density in
our simulation suite taken at various time radial points. The
maximum density shown in the plot is ≈ 6 as predicted by the
Rankine-Hugoniot jump conditions ρs/ρ0 = (γ + 1) / (γ − 1)
(this is also shown in Fig. 37). Note how the shockfront
propagation in the (r, t) domain is nonlinear, with the density
“quickly” decreasing from it’s predicted maximum.

To compare to the semi-analytic solution that Lin predicted
we may excise from Fig. 38 density profile at various times.
This is then compared to the green density profile in Fig. 37.
The result is Fig. 39 which shows the excised green den-
sity profile as a thick black line, and the various colored
markers our simulation’s results. Note at early times good
agreement between simulation and theory while for later
times the simulation diverges away from the theoretical strong

Fig. 38: Mass density, ρ, plotted as a function of space, r, and
time, t. The highest amount for the normalized mass density
is 6, as determined by strong shock theory [31], [52].

shock solution. A major discrepancy between theory and the
simulations is highlighted in the plot with the purple text
noting the nondimensional location of a “kink” in the density
line profile. This “kink” is due to the finite region where the
shock forms in reality and the simulation, whereas the theory
comes from an infinitely concentrated axial line source. The
kind has be referred to, and we interpret it as, the material
interface, contact discontinuity, or shell in the fluid medium.
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Fig. 39: Lin’s similarity solution to the mass density plotted
as a function of the normalized radial coordinate r/Rs.
Plotted in comparison to this theoretical mass density are the
mass density from our experimentally validated simulations
captured at the noted times. At early times we have good
agreement to the strong shock theory, but at later times
divergence due to irreversibilities (artificial viscosity), and
shock regime transition deviate the computational solution
from Lin’s solution.

Now that we have validated our empirically motivated sim-
ulations to experiments and verified to strong shock limiting
theory we may delve and detail the structure of thermophysical
variables. We have chosen the thermophysical variable mass
density ρ for this purpose because mass density is the most
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informative variable due to conservation equation structure§§.

Undisturbed Region

Interpreted as Initial 
Material w/in Channel

Shockwave

1. Channel Boundary
2. Material Interface
3. Contact Discontinuity

(a) Linear plot of the mass density, ρ,
plotted as a function of space, r, and
time, t.

Decreasing Density Profile

Undisturbed Region

(b) Log10 plot of the mass density,
ρ, plotted as a function of space, r,
and time, t.

Fig. 40: These plots are a projection onto 2D of Fig. 38. Note
the grey and white lines which trace the channel discontinuity
and shockwave, respectively. The continued difference in the
density behind the channel boundary shows that continued
advection is occurring, ensuring hydrodynamics as an energy
terminus.

The 3D density plot shown in Fig. 38 may be more readily
analyzed in a 2D map projection, see Fig. 40. Figure 40a
shows a linear 2D projection. Here we may readily observe
the white line as the shcokwave propagating radially as a
function of time, whereas the gray line corresponds to the
material interface/contact discontinuity, and is the “kink” as
seen in Fig. 39. The “kink” also propagates out radially from
the deposition of energy within the core of the channel. We
may be note that the propagation speed, the slope, of the lines
in the plot are both falling off. This behavior will eventually
asymptote to the shockwave decaying to a weak shockwave
and then asymptoting to an acoustic wave, while the contact
discontinuity will stop moving as seen in some of our prior
work [2], [3], [4], [13].

The usual characteristic scales of shock wave are km/s or
mm/µs. This characteristic scale for shockwaves is further
reduced for ESD events to the micron and nanosecond scale
due to geometrical considerations. Reflecting this character-
istic scale, our simulation’s shockwave dynamics is indeed
on the order of hundreds of microns and tens of nanosec-
onds (which is also a reflection of the empirical heat source
we have posited). Approximately 20 nanoseconds after the
“initiation”¶¶, we may see a shock forming, but it hasn’t
fully formed yet to due not enough energy being deposited
during the discharge yet. At 30 nanoseconds, we see the
strong shock having formed in Fig. 38, due to the maximum
density ρ̃ = 6 being reached. This shock is being driven
by the gradient in pressure behind it and an effective piston

§§When one derives the shock jump conditions from the Euler equations
the pressure p and flow velocity u across an “interface”/piston are equal,
leaving mass density ρ as a varying quantity [52]. At the shockfront the usual
Rankine-Hugoniot are used and all three variables may vary. There are only
three variables if a definite equation of state is used to reduce the specific
internal energy to solely a function of mass density and pressure.

¶¶The initiation of the discharge in our simulations is simply when we
begin to run the simulation. However, the “start of current” or initiation in
the experiment is rather harder to pin down, see Table I.

which is the channel boundary. Eventually the shockwave
separates from the piston*** at approximately 75 nanoseconds,
see Fig. 40a. Now we observe three distinct regimes of flow
in the simulation domain, recall Fig. 9.

A natural question to ask when observing these regimes of
flow is what is the general variation in these regions? The
quiescent medium is non-varying, while the regions between
the shockwave to the contact discontinuity and the contact
discontinuity to the axis of symmetry vary but with marked
difference. To more readily grasp the large differences in flow
we may take a log10 transformation of the normalized density
variable ρ̃, see Fig. 40b. The biggest takeaway from this plot
is the continued stratification in ρ(r) caused by hydrodynamic
advection away from the axis of symmetry. This advection
ensures that the hydrodynamic mode is indeed an energy sink
from the perspective of the victim load.

In addition to looking at the density we to compare to the ex-
plicit strong shock limit behind the shockwave radially we may
look at the strength of the shockwave as determined the the
overpressure. Overpressure is defined as a normalized differ-
ence in the pressure from ambient ∆p ≡ (p− p0) /p0. There
are three distinct regimes of cylindrical shockwave strength
that we may compare to, Lin’s strong shock, Plooster’s
intermediate, and general weak shock theory. Finding the
maximum pressure in the simulation domain we may calculate
the overpressure as both a function of space and time. Fig-
ure 41 shows points calculated from our simulation suite at 50
nanoseconds spacing plotted as a function of normalized radius
r/R0 where R0 is dependent on ambient medium properties:

R0 ≡
E0/h

bγp0
where b is a material dependent parameter[56], γ

the usual ratio of specific heats which is here fixed, p0 is the
ambient pressure, and E0/h the line energy density deposited
into the channel. We note that all the simulations start at the
strong shock solution, but quickly diverge from the strong
shock to Plooster’s intermediate solution which bridges the
strong and weak solutions. At the end of the simulation at
≈ 3µs the observed shocks from the simulations are still in
the intermediate shock regime. The weak shock regime is not
observed.

One reason to classify the shocks seen in these ESD events
as strong, intermediate, or weak is to leverage that knowl-
edge to futher reduce analytic models of the discharge. The
strong shock regimes is of particular interest to the value of
the Rankine-Hugoniot jump conditions (used by Lin in his
similarity solution analysis [51]). We may quantify the strong
shock regime by noting that at early times the strong shock
has not yet had time to form, Figs. 38 and 40, the time of
formation maximally being 50 ns, from Fig. 41. Departure
from the strong shock regime may be arbitrarily calculated
when the strong shock value is 5% different that the recorded
overpressure value. Table II shows departure results for all
four experimentally validated simulations.

***On the other hand the question of sonic connection between the channel
and the shockwave is another matter.
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Fig. 41: Overpressure,
∆p

p0
, plotted as a function of normalized

radial coordinate. The strong, intermediate, and weak shock
regimes in cylindrical geometry are plotted and compared to
the experimentally-validated, theoretically-verified simulation
data for the four experiments.

TABLE II: Table showing the domain of the strong shock
regime.

Shot # E0/h (J/m) R0 (µm) Rsep µm@(ns)
1 5.83 3,640 680@250
2 12.13 5,210 970@275
3 16.18 6,020 1,120@312
4 17.24 6,210 1,150@320

With this knowledge we may begin to develop further re-
ductionist models to assist in the development of the ESD
simulation toolset. The domain of applicability of the strong
shock solutions may be solidly regarded then as {∼ λR,∼
50 ns} → {∼ 10000 µm, 100s ns}.

D. Energy Budget Calculation

Using the results of the above validation and verification we
may quantify one of the metrics of interest detailed in this
report. The amount of energy guaranteed to not be going
into the victim load through by the hydrodynamic energy
terminus, Fig. 3. Using the fitted terms from the strong shock
radial solution we were able to obtain guesses for the energy
deposited per unit length into the channel E0/h. Multiplying
this number by the length of the channel (6.28 mm) we were
able to obtain the amount of energy going into the shockwave.
Table III shows summary results of this calculation.

TABLE III: Table showing the amount of energy going in the
hydrodynamics, energy stored on the initial object, and then
hydrodynamic energy percentage.

Shot # E0/h (J/m) CV 2/2 (mJ) E0 (mJ) Hydro%
1 5.83 112.5 36.6 32.5
2 12.13 200.0 76.1 38.1
3 16.18 312.5 101.5 32.5
4 17.24 312.5 108.1 34.6

Further details regarding how much energy is guaranteed to
go into the hydrodynamics may be found in an unpublished

LANL technical report by Pocher, Murphy, Rose, Morgan,
Peery, and Mace [13].

E. Capacitive Discharge Coupling

Since we now have an experimentally validated, Section V-B,
theoretically verified, Section V-C, simulation suite based
on the hydrodynamics, we may now combine it with other
physics, namely a capacitive discharge code. A three level H
system detailed in Section III-A2 is used in order populate
the chemical kinetics, while the capacitive circuit model (no
inductor L = 0) described in ?? III-A1b is used. An operator
splitting method is used to separate the hydrodynamics, plasma
kinetics, and the circuit variables. The initial condition used
in the code has the capacitor charged to an initial voltage of
V (0) = V0 holding charge Q(0) = Q0, with zero current
I(0) = 0. The plasma kinetic variables hold the initial
condition of Gaussians in space similar to the empirical heat
source term used earlier in the report. The hydrodynamics
variables are all set to quiescent, ambient conditions. Operator
splitting takes the form of solving first the hydrodynamics
explicitly, then also solving explicitly††† the plasma kinetics
and circuit variables.

Since the chemical kinetics and circuit model are all ODEs
that may be solved without recourse to the hydrodynamics.
They are solved individually on a cell-by-cell basis. Each cell
in the Lagrangian hydro code essentially becomes its own
little dynamical system whose evolution is determined by local
thermodynamic conditions.

Initial results from running this code show some promise,
however, there is a fly in the ointment. Due to the size
of the timesteps required in order to run the simulations
to completion, it is computationally expensive to run the
simulations with requisite resolution resolving kinetics and
circuit variables. For example, the required timesteps are on
order of 10,000/104 times smaller than the timesteps required
for the hydrodynamics! To put this into perspective, consider
walking a mile. For a healthy adult this should take about 20
minutes. Now consider walking a mile, but you can only take 1
meter a step, and that you can only step once every second. It
would be slightly annoying, but again a healthy adult could do
this easily. Now consider being told you can only take once
centimeter a step, then only 0.1 mm a step. It would take
someone 44 hours and ∼4,000 hours to complete these two
different tasks. This the analogy for our explicit code solver.

However, there are ways to remediate this issue; namely
implicit solvers which allow larger timesteps. We may un-
cover the timescales of appropriate timesteps by analyzing the
Jacobian matrix as done in Section III-D.

†††There are consequences, namely the size of stable timesteps, to solving
these equations with the same explicit numerical operator as the hydrodynam-
ics.



23

1) Stiffness of Differential Systems: A differential system is
regarded as stiff if the timestep to solve the autonomous
differential system is extremely small [57]. One way to find
appropriate timescales/timesteps for numerical is to look at the
eigenvalues λγ of the Jacobian matrix Jαβ = ∂fα(~ψ)/∂ψβ of
the differential system of ODEs where ψα is the α’th variable,
fα is the evolution equation for variable ψα which is a function
of all variables ~ψ ≡ [ψ1...ψns ]

T where ns is the total number
of dependent variables.

The differential system we analyze is the plasma kinetic
and capacitive circuit discharge where we observe stiff nu-
merical results in our total ESD toolset. The variable ψ ∈
{N1, N2, Ni, Te, Tg, Q} is the total phase space Γ, with
{N1, N2, Ni} being the compositional phase space ΓC , and
{Te, Tg, Q} being the plasma phase space ΓP . Starting from
generic initial conditions: N1 = N0(1−2.0e−8), N2 = 1.0e−
8N0, Ni = 1.0e − 8N0, Te = 300 K, Tg = 300 K, Q = Q0

with N0 = 2.5e25 (1/m3) and Q0 = 2 µC. Solving this
equation as a function of time and plugging in the trajectories
from phase space Γ into the Jacobian matrix we may obtain
the eigenvalues λγ(t), see Fig. 42. The eigenvalues give an
indication as how quickly “information" is exchanged among
the characteristic variables.
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Fig. 42: Eigenvalues of the Jacobian matrix, Jαβ , of the
capacitive differential system. The plot shows the absolute
value of the logarithm of the absolute value of λγ . Note the
disparate orders of magnitude. The noisy, brown dotted line
is a zero eigenvalue arising from conservation of total particle
number N0.

The disparate orders of magnitude that are evident from Fig. 42
give credit to the observation that the the ESD evolution
toolset has a numerically stiff system. The system we are
analyzing right now is solely the plasma kinetic and circuit
differential system that is solved on a cell by cell basis in the
current formulation of the ESD evolution toolset. If the full
differential system of the hydrodynamic code was included to
the magnitudes of those eigenvalues would be much less than
than already shown.

We may further take a ratio rγδ ≡ λγ/λδ of the eigenvalues to
determine the stiffness ratio of this subset differential system,
see Fig. 43. The stiffness ratio informs us as to the relative size
of appropriate timesteps so that the solution is not numerically
unstable.
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Fig. 43: All 15 eigenvalue ratios: rγδ ≡ λγ/λδ of the Jacobian
matrix, Jαβ . The disparate orders of magnitude shows that
an extremely small timestep is needed to ensure numerical
stability.

The ratios plotted in Fig. 43 show explicitly that the subset
differential system of the plasma kinetic and circuit variables
require an implicit solver to be computationally feasible. An
implicit solver will allow a numerical operator to take larger,
and more computationally tractable, timesteps. Using this
knowledge gleaned from our physical analysis we may propose
a physically motivated evolution of the numerical operators
used for the ESD toolset.

F. A Physically Motivated Numerical Operator

An explicit numerical scheme that treats hydrodynamics, plas-
mas kinetics, and circuit variables equivalently has been shown
to be computationally infeasible. Our detailed analysis of the
(stiff) eigenvalue ratios has indicated that an explicit time
scheme is not practical. A different numerical operator that
reflects the needs of the time scales of the differential system
needs to be used. This physically motivated numerical operator
is a implicit time solver.

We propose that the physically motivated implicit time solver
be used for the plasma kinetic and the circuit variables that
are solved on a individual cell-by-cell basis. This implicit
solver would be a constituent component of the entire ESD
toolset. A proposed evolution of the ESD toolset may be seen
in Fig. 44 [19]. The current module that was completed in
the summer of 2021 has currently a totally explicit temporal
numerical operator. The proposed evolution breaks up the
three constituent physics (hydrodynamics, plasma kinetics, and
capacitive circuit) making up the solved ESD event in the
capacitive discharge simulations into modular sections. Each
physics module will have a solver that would meet its own
temporal timestep stability needs.

VI. DISCUSSION

In conclusion, throughout this report we have showcased the
following:

• Performed detailed analysis into chemical kinetics pro-
viding insight into underlying dominant physical scales:
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Fig. 44: Current and proposed evolution of the ESD simulation toolset.

species, timescales, and species interaction. For low tem-
perature kTe the dominant species is ground N1. As the
temperature increases the ionized species Ni becomes
dominant with the dominance tradeoff occurring at ap-
proximately 2 eV. For higher numbers of ionized species
the excited species “eat away” at the total equilibrium
number of the ionized species at moderate temperature ≈
2 eV, however at higher temperature > 4 eV the ionized
species regains its marked dominance. The timescales of
equilibration based Lyapunov functions Vη̃ do not vary
much as a function of the total species in our analyzed
models. The timescale for equilibration for temperature
< 1.5 eV is on the order of τ (eq) ∼ µs, while for >
2.5 eV the equilibration time is on the order of ns. As
noted in our analysis the Jacobian matrix, we showed that
the dominant interaction for most species is with either
the ionized species Ni/ηi or it nearest excited neighbor
Nα±1/ηα±1.

• Showcased potential of model reduction methods and
proposed viable extension. The ILDM method has been
shown to have a working proof of concept to uncover
the slow manifold characteristic of the chemical kinetic
simulations. We also enumerated alternative dimension
reduction schemes such as the statistical physics moti-
vated method Boltzmann grouping of of vibrational levels
or PCA analysis of trajectories in the composition space
ΓC .

• Substantiated and quantified the applicable space-time
domain for Lin’s strong shock limit. The domain
of applicability (recall {∼ λR,∼ 50 ns} → {∼
10000 µm, 100s ns}) for the strong shock limit in cylin-
drical geometry has been shown from an experimentally
validated and and theoretically verified simulation suite.
This includes quantifying the density profile evolution
and overpressure calculation as a function of a normalized
radius measurement.

• Theoretically verified and experimentally validated en-
ergy “earmarked” for hydrodynamic advection. Quanti-
fied the percentage of energy going into the ESD energy
budget [13]. Around 30% of the energy stored on the
capacitor in Michael Murphy’s and Doug McHugh’s
legacy experiments has been shown to be sunk into the
hydrodynamic energy terminus, an energy sink in the
ESD energy flow network. This is a conservative estimate
of the total energy that is available to flow through the
spark to other circuit components.

• Developed understanding of constituent ESD physics and
proposed physics-motivated generation of general ESD
toolset. The physics motivating this evolution is based on
the stiffness of the differential systems constituting the
dynamical system that is solved on a cell by cell basis
throughout the hydrodynamic framework. The proposed
numerical operator will be dependent on the timescales
of the physics to ensure numerical timestep stability.
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